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Wherefore particle physics?

Playing with really cool toys

Answering the big questions

What is the universe made of?
What holds it all together?
Where did we come from?

2



Particle Data Group, LBNL

time

energy

3



Particle Data Group, LBNL

time

energy

3



Particle Data Group, LBNL

time

energy

3



E=mc2

• Mass-energy equivalence 

• Colliding particles at energy E can produce 
particles of mass up to m

• Rinse, lather, repeat

1. Discover new particles (need enough of them)

2. Measure their properties (need a lot of them)

➡ I will provide a more detailed example of both

• c=1→E=m

• melectron~0.5 MeV, mproton~1 GeV
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Accelerators

• Oscillating electric fields to accelerate a 
charged particle

• F = qE & F = ma : a = qE/m

• Use magnets to steer particles

• Collide two beams of particles into each other: 
particle collider

• Measure momenta of (stable) decay products: 
particle detector
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The Cyclotron

Ernest Lawrence
Nobel Prize in Physics (1939)

Accelerated protons to 80 keV (1% the speed of light)
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Accelerators Everywhere
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The Standard Model (1960s)
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Fermions: 
spin-1/2

Bosons: 
spin-1
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Electromagnetism

Strong

Weak
S. Glashow,
S. Weinberg,
A. Salam
Nobel Prize (1979)

8



The 21st Century
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The 21st Century

Ob
ser
ved

• charm quark: 1974@SLAC, BNL
• tau lepton: 1975@SLAC
•bottom quark: 1977@FNAL
• gluon: 1978@DESY
•W and Z boson: 1983@CERN
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL
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The 21st Century

Ob
ser
ved

• charm quark: 1974@SLAC, BNL
• tau lepton: 1975@SLAC
•bottom quark: 1977@FNAL
• gluon: 1978@DESY
•W and Z boson: 1983@CERN
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL

Precision measurements of 
particle properties agree with 
standard model predictions
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But...
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The Higgs* Mechanism

• Field that permeates the universe

• Interaction corresponds to mass

Electron
m=0.511 MeV

Photon
m=0 MeV

Top quark
m=173180 MeV

No Higgs Field With the Higgs Field

*[Brout, Englert]; [Higgs]; [Guralnik, Hagen, Kibble] 11



The Higgs Boson

• Peter Higgs postulates a 
particle associated with the 
Higgs Field

• The Higgs Boson (spin 0)

• “The God Particle” (L. 
Lederman)

• Searches throughout the latter 
half of the 20th century 
yielded no evidence 
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Predicting the Higgs Boson’s Mass

• Direct searches up to 2006 exclude mH<114 GeV

• Standard Model predicts the mass of the Higgs 
boson in terms of all other measured SM 
parameters

• In particular, the mass of the W boson

• As of 2006, mW = 80.403±0.029 GeV (0.04%)

• Predicts mH < 186 GeV
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The Fermilab Tevatron

• Proton-antiproton collider at up to 980 
GeV per beam

• Operated from 1992-1996 at 1.8 TeV, 
2001-2011 at 1.96 TeV

• First ever superconducting particle collider

• ~4T superconducting magnets

• Two detector experiments: CDF and D0

• ~600 physicists each 

CDF

D0

1.2 mi

The CDF 
Detector

to Chicago (~35 mi)
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“Seeing” with Detectors

• Layered detectors measure energy deposition of 
particles

• Rely on “reconstructing” parent particle from 
stable decay products

W

e

ve

t~10-25 s

stable

undetectable
but inferable
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Calibrating Energy Measurements
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Calibrating Energy Measurements

Thermometer: CDF Detector
Ice Water: Previously well-measured particles
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Measured W Boson Mass
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Using ~1 million W boson decays

mW = 80.387±0.019 GeV

Combined with measurements 
from other experiments

mW = 80.385±0.015 GeV
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So what does it tell us?
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mW = 80.385±0.015 GeV

mH < 152 GeV

Direct searches:
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The Large Hadron Collider

21

• Proton-proton collider up to 7 TeV per beam (14 TeV collisions!)

• Operated at 7 TeV in 2011, 8 TeV in 2012

• Two detector experiments: ATLAS and CMS

• ~3000 physicists each 



The LHC by the numbers
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Energy: 14 TeV =     7 x Tevatron

Length: 27 km =     4 x Tevatron

Magnetic Field: 8.3 T =     2 x Tevatron

Beam Energy: 350 MJ = 250 x Tevatron

Instantaneous Luminosity =   60 x Tevatron

# of Collisions in an event =   10 x Tevatron

Data Rate: 1 Terabyte / sec =   50 x Tevatron

# of Detector Channels: 100 M = 100 x Tevatron

# of Scientists (~3000/expt) =     4 x Tevatron



ATLAS and CMS
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ATLAS: 42m x 22m
7,000 tons

CMS: 21m x 15m
12,500 tons



ATLAS and CMS
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ATLAS: 42m x 22m
7,000 tons

CMS: 21m x 15m
12,500 tons

10,000 tons



Searching for the Higgs

• Predicted Higgs production rate 
exceedingly rare

• ~10000 times less frequent 
then W boson production

• 1 in 10 billion collisions

• Most common decay products 
also immediately decay

• Nearly identical background 
processes are far more 
common

24
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Some candidate events
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H→γγ at CMS

H→ZZ at ATLAS



Bump Hunting

• Plot mass of data events (sum of decay energies)

• Look for peak over known backgrounds

26



Higgs to Two Photons
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Higgs to Two Z Bosons
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But how significant?

• A new particle is “discovered” only with 5σ significance

• p-value of 3x10-7

• Observed data must be no more likely than 1-in-3.5 million 
to have been produced in the absence of the new particle

29



July 4, 2012

30

5σ significance at both experiments!

A new particle with mass 125 GeV is discovered
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Well, what is it?

• Answer: a “Higgs-like boson”

• Definitely a new particle, but...

• Not all predicted decays seen with ample significance

• Need more data!
32



What’s next?

• LHC shut down for ~2 years 
(last week!)

• Magnet upgrades to achieve 
design energy (14 TeV)

• Additional data in 2015 and 
beyond can (hopefully!) close the 
loop on the Higgs boson

33



Conclusion: just the beginning

• Many unanswered questions:

1. Why do particles have mass?

2. What is “dark matter”?

3. How does gravity work?

4. What happened to all the antimatter?

5. What is “dark energy”?
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The LHC could provide insight to all of these
Stay tuned
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The 20th Century

1/10,000

~1900 ~1910
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The (later) 20th Century

1/10,000

~1900 ~1910 ~1940

1/10

~1970

1/1,000
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An aside on units

• Particle physicists use “natural units”

• c = h = 1

• Can write mass/distance/time in units of energy

• 1 eV/[c2] = 1.8 x 10-36 kg

• mproton = 938 MeV, melectron = 0.511 MeV
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The particle zoo (1940s-50s)

• Accelerator-based particle 
physics flourishes

• Dozens of “fundamental” 
particles discovered

• Picture starts to look 
complex

• Are they actually 
fundamental?

39



Quarks inside protons/neutrons

StanfordLinearAcceleratorCenter 
1969

Accelerate electrons 
into atomic nuclei

electron

up/down 
quarks

At rest:
proton (2u+1d)
neutron (2d+1u)

40



Discovery of charm[ed] mesons

B. Richter, et al. (SLAC)
“ψ” particle

S. Ting, et al. (BNL) 
“J” particle

J/ψ meson
Nobel Prize (1974)
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Discovery of W and Z bosons

Super Proton Synchrotron (SPS)
proton-antiproton collider: 630 GeV

CERN (Geneva, Switzerland)

Standard model predicts 
large masses for W and Z 
bosons (~80 GeV)

UA1 and UA2 experiments 
announce discovery in 1983

C. Rubbia and S. Van der 
Meer: Nobel Prize (1984)
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